

 1

SPV Programmer's Guide

 2

Table of Contents

1. INTRODUCTION 4

2. GETTING STARTED 5

2.1. CONVENTIONS 5
2.2. SPV APP WIZARD (NOT RELEVANT TO VISUAL EXPRESS USERS) 5
2.2.1. USING THE WIZARD 5
2.2.2. STEP 1: FILENEW 5
2.2.3. STEP 2: CHOOSE SPVAPPWIZARD AND SUPPLY A NAME FOR THE PROJECT 6
2.2.4. STEP 3: CHOOSE HDL LANGUAGE, SIMULATOR, AND PROJECT TYPE 6
2.2.5. STEP 4: DIRECTORY SETUP 7
2.2.6. STEP 6: OPTIONALLY LINK TO DPF LIBRARY 8
2.2.7. STEP 6: FINISH AND BUILD 9
2.2.8. SETTING UP THE DEBUGGER 10
2.2.9. STEP 1: RIGHT CLICK ON PROJECT NAME AT LEFT PANE, AND CHOOSE “PROPERTIES”

FOR DEBUGGER SETTINGS FORM 10
2.2.10. STEP 1: CHOOSE DEBUG TAB AND FILL IN THE FIELDS 11
2.3. SPVCPPSIM (OPTIONAL) 13
2.3.1. VISUAL C++ 2005 13
2.4. HDL SIMULATION 16
2.5. STUB FILES 21
2.5.1. VERILOG 21
2.5.2. VHDL 22

3. SIGNALS AND PROCESSES 23

3.1. FIRST STEPS 23
3.1.1. DRIVING SIGNALS 23
3.2. SIGNALS 26
3.2.1. WHAT IS A SIGNAL? 26
3.2.2. LOGICAL EXPRESSIONS 30
3.3. PROCESSES 31
3.3.1. WHAT IS A PROCESS? 31
3.3.2. PROCESS TYPES 31
3.3.3. EXECUTING PROCESSES 32

4. USING BIT VECTORS 33

4.1. OVERVIEW 33
4.1.1. WHAT IS A BIT VECTOR? 33
4.1.2. OTHER BIT VECTOR CLASSES 34
4.2. BIT VECTOR DATA 34
4.2.1. CONSTRUCTION AND INITIALIZATION 34
4.2.2. BIT VECTORS, INTEGERS, AND OPERATORS 37
4.3. DISPLAYING BIT VECTORS 38
4.4. DEBUGGING SUPPORT 39
4.5. ABOUT HEADER FILES 40
4.6. REFERENCE CLASSES 40
4.6.1. SLICE 40

 3

4.6.2. BOOL 42
4.7. BIT VECTOR ARRAYS 42
4.7.1. DEBUGGING BIT VECTOR ARRAYS 44
4.8. AGGREGATING AND DISPENSING BITS 44

5. GENERATION 46

5.1. WHAT IS GENERATION? 46
5.2. GENERATORS 46
5.2.1. NON-RANDOM (DETERMINISTIC) 47
5.2.2. RANDOM 49
5.2.3. USER DEFINED 51
5.2.4. COMPOSITE GENERATION 52
5.2.5. FILE DEFINED GENERATORS 55

6. COVERAGE 62

6.1. WHAT IS COVERAGE? 62
6.1.1. DEFINITION 62
6.1.2. TYPES OF COVERAGE 62
6.1.3. COVERAGE CLASSES 62
6.1.4. ADAPTIVE GENERATION 66

7. COLLECTING AND COMPARING 68

7.1.1. COLLECTION PROCESSES 69
7.1.2. COMPARE 71
7.1.3. TRANSFER FUNCTION 71

8. CALLING MATLAB ROUTINES FROM SPV 72

8.1. SETUP 72
8.2. TWO WAYS TO CALL 72
8.3. DPFML INTERFACE CLASSES 73
8.4. CALLING THE ROUTINES 75
8.5. MORE USAGE 78

 4

1. Introduction

The SPV documentation is divided into two main parts, the Programmer's

Guide (this document) and the Reference Guide. Whereas the Reference Guide is a

dry class-by-class and function-by-function description of the components that make

up SPV, the Programmer's Guide is intended to be a tutorial for the uninitiated.

The Programmer's Guide is organized as a logical progression of chapters

starting with the basics and progressing towards more advance topics, with examples

provided all along the way.

• The first chapter, "Getting Started" describes how to set up a

verification project with SPV and takes the first steps in programming

SPV.

• "Signals and Processes" delves into how HDL signals can be

manipulated from within SPV and how to make C++ code sensitive to

changes in the simulation.

• The next chapter, "Bit Vectors" covers the basics of bit vector

manipulation.

• The "Generation" chapter shows you how to create complex random

and non-random generators for creating verification stimulus.

• The "Coverage" chapter teaches how to use the SPV coverage classes

to confirm the thoroughness of the test suite. Also, it shows how to

use the coverage database at runtime for more efficient generation.

 5

2. Getting Started

This chapter describes the necessary steps required to set up a the beginning of a

verification project including the stub files that must be added to the HDL

compilation. Most users should use the SpvAppWizard, which supports Active-HDL

and ModelSim, that is installed in the the VS 6 environment as part of the SPV install.

This, by far, is the easiest way to get started. For other simulators or for SpvSim

modeling projects, the steps are described in the sections following the wizard

description.

2.1. Conventions

• SPV reserved words, classes, and functions appear in Bold.

• A chain of selections in a menu hierarchy is described with arrows.

For example: FileOpen.

• Captions of text boxes, buttons, and other GUI elements (except

menus) are enclosed in double quotation marks (").

• In general, words that will have to be replaced by the user with some

other text as written in Italics.

• Text that must be typed by the user appears in the Ariel font.

• Whenever the word SpvDirectory appears in Italics, substitute the

SimPlus installation directory.

• Whenever the word SpvVersion appears in Italics, substitute the

version of SPV that you have.

• Whenever the word HDL appears in Italics, substitute either Verilog or

Vhdl, as appropriate to the HDL language you are using.

2.2. SPV App Wizard (Not relevant to Visual Express
Users)

Application Wizard is disabled in Visual Express 2005, but it is possible to receive

the prepred demo from costumer support.

2.2.1. Using the wizard

2.2.2. Step 1: FileNew

 6

2.2.3. Step 2: Choose SpvAppWizard and supply a name
for the project

This example uses “Test1” as the project name.

2.2.4. Step 3: Choose HDL language, simulator, and
project type

The “Empty” project creates just the SPV entry point function and no more.

The “Driver-Collector” project (which is what we will use in this book)

 7

creates a somewhat more developed structure. This structure includes a

driver/generator to fabricate and insert stimuli and a collector/comparator to

monitor the DUT and compare the output to the expected values. Press the

“?” button for a schematic diagram.

(The examples in the this book were created using the Wizard with the default

choices.)

2.2.5. Step 4: Directory setup

This form searches for installed simulators and displays the directories it has

found for the interface libraries (for linking) and the simulator executable (for

compiling the sample HDL). The Wizard will create or modify an

environment variables, $SPV_SIM_LIB, based on these choices, as long as

the “Set $SPV_SIM_LIB environment variable to the path above” is set. If

you have changed the simulator directory from the last execution of the

wizard, or this is the first time the wizard is run, then after Step 5, below, you

will have to shut down the MSVC 6 environment and restart it so that the new

environment variable will take effect.

 8

2.2.6. Step 6: Optionally link to DPF library

This form gives you the option of link in the DPF library to your project. The

main feature here reason to do so is the Matlab interface classes that you can

you use to ease calling Matlab routines at runtime (covered later in this book).

Similar to the simulator form, this form will search for Matlab installations

and give you the ability to choose the appropriate directory. Here, two

environment variables will optionally be set, $SPV_MATLAB_INC and

$SPV_MATLAB_LIB. As for the previous form, you may have to shut down

and restart the Visual Studio and restart it so that the new environment

variable will take effect.

 9

2.2.7. Step 6: Finish and Build

At this point the wizard will complete. It will lauch the simulator, compile the

sample HDL code and create a C++ project. As mentioned above, you may

have to shut down and restart the Visual Studio 2005 environment and reopen

the workspace – you will see a pop-up box telling you to do so, if it is indeed

necessary. At this point, you may build the project with BuildBuild

Solution

 10

2.2.8. Setting up the debugger

The wizard is not capable of setting up the debugger. You must do so manually.

These are the steps.

2.2.9. Step 1: Right Click on project name at left pane, and
choose “Properties” for Debugger Settings Form

 11

2.2.10. Step 1: Choose Debug tab and fill in the fields

Examples for ModelSim and ActiveHDL as shown below.

Notice that the command line argument has a –do switch that will cause

the simulator to run the Run.do script. There you will find the actual

commands that are passed to the simulator. They will include a design

load, possibly a directory change, a wave viewer command to display the

top level signals, and a run command.

o ActiveHDL
Remember to substitute the project name you supplied to the

wizard instead of “Test1” in the “Working directory:” field.

 12

o ModelSim

For ModelSim, note that the executable for debug is vsimk.exe

and NOT vsim.exe or modelsim.exe. If modelsim.exe or

vsim.exe is written, replace it by writing vsimk.exe. This is

because vsim spawns a vsimk process, which actually runs the

simulation, but the debugger will not be aware of this.

 13

2.3. SpvCppSim (Optional)

Null simulation is used when developing verification code without a

simulator. A null simulator enables a C++ project to be built without linking to a

HDL simulator. This allows for verification development to progress before the

hardware development has advanced to the point where it can be tested without

taking up a license for the HDL simulator. Later, when the hardware is ready for

testing, the project can easily be converted to work with the hardware simulation.

The steps required for setting up SPV with a null simulation, in general,

require the user to:

• Add the SPV header file directory to the development environment.

• Add the appropriate library files to the development environment.

• Create an application project, and a library project. The former will act

instead of an HDL “simulator” and the latter will be the verification

code. This separation makes it easier to port the verification to a true

HDL simulator later on.

2.3.1. Visual C++ 2005

This section describes how to set up SPV with a Null Simulation when using

Visual C++ 2005

1. Select FileNew Project. In the Visual C++ tab, select "Win32" and

then choose "Win32 Console Application". Give the project a name in

the "Name" text box. In the Solution box, select "Add To Solution" (if

you want to add this project to the current solution). Press the "OK"

button.

2. Choose "Next", and then uncheck "Precompiled Header" and check

"Empty project" and press "Finish". If you choose one of the other

options, you will have to delete the main function as this function is

realized within SPV.

0

 14

3. Now add SpvMain. Select the "Source Files" and right click. Choose

AddNew Item… In the files tab, select C++ File and give the file a

name (SpvMain), and press "Add".

4. In the new file, include SpvPlugin.h and add SpvMain(). The file

should look something like this

5. Select the Project on the "Solution Explorer" and right click. Choose

"Proporties". In the "C++" tab choose "General" from the

"Configuration Properties" list. Under "Additional Include

Directories" enter either SpvDirectory\SpvVersion\spv_Product\include OR

$(SPV_INC) and make sure SPV_INC in the environment variables is

pointing to the include directory of SPV.

6. For Matlab support add $(SPV_INC)\dpf

#include "SpvPlugin.h"

void SpvMain(int argc, char** argv)

{

}

 15

7. In the "Linker" tab, choose "General". Under "Additional Library

Directories" add a SpvDirectory\SpvVersion\lib\win32\VC80 or write

$(SPV_LIB) and make sure your environment variable SPV_INC is

pointing to the lib directory of SPV (as above).

8. In the "Link" tab, choose "Input" from the "Category" list. Under

"Object/Library modules:" add at the beginning of the line the

following:

Spv<Simulator><VerilogOrVHDL><Rl(Release)Db(Debug>.lib.

So, if you are using SpvSimulator, then you will need to provide

SpvCppSimDb.lib for debug, SpvCppSimRl.lib for release version.

 16

To conclude, we use SpvCppSimDb.lib in the example.

Also, please add SpvPlugInDb/Rl.lib for supporting external

parameters file.

Add SpvDpfDb.lib to add Matlab support. (Make sure to add in the

include $(SPV_INC)\dpf

A sample SpvSim application, that is similar to the projects produced by the

SpvAppWizard for Verlilog and VHDL, is included with document, in the

SpvSimExample directory. The code snippets in this book can be tried there

without the need for an HDL simulator.

2.4. HDL Simulation

Verification with an HDL simulation means that the verification code is

integrated with an HDL simulator running Verilog or VHDL code. Various

simulators work in varying ways. Generally speaking, the verification code must

be linked either statically or dynamically to the simulator.

2.4.1.1. Visual C++ 2005

With an HDL simulator, the verification code must be compiled to a dynamic

library.

1. Select FileNew->Project. In the projects tab, select " Win32 Project".

Give the project a name in the "Name" text box. Select "Add to Solution"

if you want to add to the current project. Make sure the location is inside

your project. Press the "OK" button.

 17

2. Press next on the first screen ("Welcome to the Win32 Application

Wizard").

3. Choose "DLL" in the Applicatin Type. Check "Empty Project" and press

"Finish".

 18

4. Now add SpvMain. Select the "Source Files" and right click. Choose

AddNew Item… In the files tab, select C++ File and give the file a

name (SpvMain), and press "Add".

5. In the new file, include SpvPlugin.h and add SpvMain(). The file should

look something like this

6. Select the Project on the "Solution Explorer" and right click. Choose

"Proporties". In the "C++" tab choose "General" from the

"Configuration Properties" list. Under "Additional Include Directories"

enter either SpvDirectory\SpvVersion\spv_Product\include OR $(SPV_INC)

and make sure SPV_INC in the environment variables is pointing to the

include directory of SPV.

7. For Matlab support add $(SPV_INC)\dpf

#include "SpvPlugin.h"

void SpvMain(int argc, char** argv)

{

}

 19

8. In the "Linker" tab, choose "General". Under "Additional Library

Directories" add a SpvDirectory\SpvVersion\lib\win32\VC80 or write

$(SPV_LIB) and make sure your environment variable SPV_INC is

pointing to the lib directory of SPV (as above).

9. Add the directory where the simulator's interface library is kept. (Not

relevant to null sim projects) Add a comma and:

For ModelSim: C:\Modeltech_6.1c\win32 (if your installation directory for

ModelSim is not C:\Modeltech_6.1c, then substitute yours).

For Active-HDL ActiveHDL: C:\Program Files\Aldec\Active-HDL 7.1\pli\lib

(if your installation directory for Active-HDL ModelSim is not

C:\Program Files\Aldec\Active-HDL 7.1, then substitute yours).

Alternately, you can use the $(SPV_SIM_LIB), which is what the SPV

wizard uses by default. However, the wizard searches for simulators and

gives you the opportunity to set this variable. So, if you have never used

the wizard before, then you will have to set SPV_SIM_LIB yourself to the

directory described above.

10. In the "Link" tab, choose "Input" from the "Category" list. Under

"Object/Library modules:" add at the beginning of the line the following:

Spv<Simulator><VerilogOrVHDL><Rl(Release)Db(Debug>.lib.

 20

So, if you are using ModelSim, then you will need to provide

SpvMtiDb.lib for debug, SpvMtiRl.lib for release version.

To conclude, we use SpvMtiDb.lib in the example.

Also, please add SpvPlugInDb/Rl.lib for supporting external

parameters file.

Add SpvDpfDb.lib to add Matlab support. (Make sure to add in the

include $(SPV_INC)\dpf

Add mtipli.lib to add the modelsim library.

Add aldecpli.lib for Active-HDL ActiveHDL.

If you are using Modelsim then in the "Module Definition File" add

either SpvDirectory\SpvVersion\lib\win32\VC80\verilog|vhdl_Definition.def or

$(SPV_LIB)\verilog|vhdl_Definition.def.

If you are using ActiveHDL then in the " Module Definition File" add

either SpvDirectory\SpvVersion\lib\win32\VC80\vhpi_Definition.def or

$(SPV_LIB)\vhpi_Definition.def.

11. In the "Debugging" tab, under "Command:", enter

C:\Modeltech_6.3\win32\vsim.exe (if your installation directory for

ModelSim is not C:\Modeltech_6.3, then substitute yours).

12. Also in the "Debugging" tab, under "Working directory:", enter the

directory of the Verilog or VHDL project.

13. Also in the "Debugging" tab, under "Program Arguments:", enter all of the

top level modules that are to be used in the simulation, separated by

spaces.

For Verilog projects only, add a space and "spv". After the modules, add
–pli PathToDLL, where PathToDLL is the path to the DLL, either

absolute or relative to the working directory.

Alternatively, for ModelSim, PathToDLL can be specified in the

 21

ModelSim.ini file as the veriuser attribute.

Note that when working outside of Visual Studio with the former

alternative, the modules and –pli switch must appear at the command line.

For VHDL projects, the DLL name is specified in the stub file. See the

section on stub files, below.

2.5. Stub Files

Linking the verification code to the HDL simulation requires some additions

to the HDL code. Stub files supply the necessary additions to the HDL project that

supply the missing link.

2.5.1. Verilog

For most Verilog projects, the stub file is static. In any case, it must be built

with the HDL project and specified as an additional top level module at simulation

execution. It must, at minimum, be composed of:

The link to the verification DLL is supplied at the command line, by

specifying spv as an additional top level module and with the –pli switch: -pli

dll_Name.dll. Replace dll_Name with the name of your verification DLL.

Note that if the directory where dll_Name is located is not on the OS path,

then you will have to specify a full path name to the DLL, either absolute or

relative to the simulation work directory.

module spv;

parameter from_File_Name = "";

parameter date = 14092005;

parameter dec_Sum = 0;

initial $spv;

endmodule

 22

2.5.2. VHDL

VHDL projects require a stub file be built with them. It must, at minimum, be

composed of:

Replace dll_Name with the name of your verification DLL. Note that if the

directory where dll_Name is located is not on the OS path, then you will have

to specify a full path name to the DLL, either absolute or relative to the

simulation work directory.

 Additionally, in the top level module, under the architecture line, add
component simPlus
end component;

Now, at the end of the instances declared in the begin: section, add

 sp : simPlus;

This line creates an instance of the module defined in the stub file. It is

critical that this instance be the last instance declaration in the begin: section -

any signal appearing after it will not be recognized by the verification code!

The final top level architecture code should look something like this:

ENTITY Spv is

END Spv;

ARCHITECTURE Arc of Spv is

 attribute foreign : string;

-- ACTIVE-HDL only:

 attribute foreign of Arc : architecture is "VHPI dll_Name.dll;

connect_Spv_Vhpi";

-- MODELSIM only:

 attribute foreign of Arc : architecture is "vhdl_Init_simPlus dll_Name.dll";

BEGIN

END;

 23

3. Signals and Processes

3.1. First Steps

3.1.1. Driving signals

Use the wizard to create a “Simple” project. (Here, we’ll assume that the

project name is “BookTest”.) Run the simulation as described above. You should see

something like this:

LIBRARY ieee;

use ieee.std_logic_1164.all;

ENTITY Tb is

END Tb;

ARCHITECTURE TbArc of Tb is

---- Component declarations -----

COMPONENT Comp

END COMPONENT Comp;

--SPV stub module component

COMPONENT Spv

END COMPONENT;

BEGIN

---- Component instantiations ----

CompInst : Comp

--VERY IMPORTANT - Instantiate SPV stub module here. Must

--be at the END of the top level module

sp : Spv;

end TbArc;

 24

.

Open the BookTestDriver.cpp file, there will be a ThreadFunc() function, with

the following code:

 SpvEvent pClock("BookTestTb.clock", AtPos);

 SpvSig resetN("BookTestTb.reset_n");

 SpvSig dataIn("BookTestTb.data_in");

 SpvSig dataEn("BookTestTb.data_in_valid");

 //TODO: Instantiate other signals here

 // Waiting 2 Clocks, Reseting for 2 clocks and continue

 Wait(pClock,2);

 resetN = 0;

 Wait(pClock,2);

 resetN = 1;

 //TODO: Set initial reset values for all signals here

 //TODO: Drive data here

 Wait(pClock);

 //TODO: Set initial reset values for all signals here

 //TODO: Drive data here

 Wait(pClock);

 25

Taking a quick look at the code, we can see that the first line defines a

simulator event called pClock which is the positive edge of the

BookTestTb.clock signal. The next three lines declare C++ representatives of

simulator signals; reset_n, data_in, and data_in_valid, respectively. The next

line uses pClock to block the process for 2 clock cycles after which it drives

reset low, blocks for another 2 clocks, and drives reset high.

To complete the reset sequence, data_in and data_in_valid should be driven to

their reset values, whatever those may be. To do so, we’ll simply add two

more lines.

In other words, “driving” a register value is the same as assigning its SpvSig

representative. If there were other inputs to our DUT, we would declare more

SpvSig instances and assign those as well.

The ThreadFunc() function is the defintion of an SPV thread process. An

SPV thread process starts execution after the StartTProc() function is called,

which we do in BookTestDriver’s Start() function.

The first parameter of the StartTProc() function will almost always be this.

The second is the class member function which will be the process code. The

third, optional parameter (not shown here), is a string name which will be used

as an identifier for the process (mostly in debug output). Note that the string

name does not have to be the same as the function name.

Now, let’s have our driver process actually do something beyond resetting the

DUT. After the reset initializations, we’ll add:

dataEn = 0;

 dataIn = 0;

void BookTestDriver::Start()

{

 StartTProc(this, (SPVPM)&BookTestDriver::ThreadFunc);

}

 26

Here, we’ve put the process into an endless loop, where at the beginning of

each loop we raise the data_in_valid signal, drive 16 clocks of data_in

(counting from 0 to 15), and lower data_in_valid. Note that the calls to Wait()

have no second parameter. This is because the second parameter, “repeat”, is

1 by default.

Running the simulation now yields:

In the next sections, we’ll discuss the elements we’ve introduced here more in

depth.

3.2. Signals

3.2.1. What is a signal?

3.2.1.1. Definition

Signal is a generic term for any hardware component that has a value, for

example, a register. Supported components include:

Verilog:

• reg

 while(1)

 {

 Wait(pClock);

 dataEn = 1;

 for(unsigned i = 0; i < 0x10; i++)

 {

 dataIn = i;

 Wait(pClock);

 }

 dataEn = 0;

 }

 27

• wire

• event

VHDL

• std_logic

• integer

• bool

• enum

• bit

• arrays of std_logic, bool, bit

3.2.1.2. Linking C++ to a signal

The SpvSig class enables reading and writing values to and from

signals in the SPV framework, according to the rules described above.

Connection to an HDL simulation signal is via the full path name of the signal

in SpvSig's constructor or in its Init() function.

The following example assumes a Verilog "top" module with a

submodule instance, “subtop”, which contains a wire, "bus", and a register

"clk".

For VHDL under ModelSim:

Note that there is no need to set the bit lengths of the signals, as these are

defined in the HDL code. Note also that in the VHDL form, the top level module

is implicit.

3.2.1.3. Differences between Verilog and VHDL

simulations

SPV provides a level of abstraction from the particular HDL language being

used. However, there are some differences.

SpvSig clk("/subtop/clk");

 //wire is read/write

SpvSig bus("/subtop/bus");

SpvSig clk("top.subtop.clk");

 //wire is read-only

SpvSig bus("top.subtop.bus");

 28

o For ModelSim only: Verilog signal paths are separated by “.”

while Vhdl is separated by “/”. For ActiveHDL projects, the

format is the same for both Verilog and VHDL.

o For ModelSim only: Verilog signal paths start at the top level

module while in VHDL, the top level is implicit.

o Wires in Verilog cannot be driven directly. A register must be

declared in the Verilog and assigned to the wire. This register

can then be driven from SPV.

3.2.1.4. Reading Signal Values

The binary value of a signal represented by can be extracted with the

Uint() or Uint64() functions, which return the first 32 and 64 bits of the signal

respectively. (Later, we’ll see another option, using the SPV bit vector class,

SpvBitVec, for wider signals) If the signal is narrower than 32 bits (for

Uint()) or 64 bits (for Uint64()), the higher bits will be zeroed.

(In many cases, the Uint() function may not even be necessary. The

rule is, if the compilere doesn’t complain, its OK.)

Continueing in the ThreadFunc() function….

3.2.1.5. Signal Assignment and Simulator Synchronization

SpvSig can be assigned binary values with the C++ assignment

operator or with the Assign() function. However, the values will not be

updated in the simulation until SPV returns control to the simulator, or in

other words, until the next Wait(). This means that reading a value

immediately after assignment will not reflect the new value assigned.

 //Get value of data

 unsigned sigVal = dataIn.Uint();

 //Get 64 LSB bits of sig val.

 //SPV_UINT64 is a macro that expands to the compiler's 64 bit unsigned integer type.

 SPV_UINT64 sigVal64 = dataIn.Uint64();

 //Product with Uint()

 unsigned prodVal1 = dataIn.Uint() * 3;

 29

3.2.1.6. Signal Slices

It is also possible to assign sections, or slices, of a signal and read them as

well. This is done through the round parenthesis and square brackets operators, as

below:

If the slice’s indices are out of range of the signals width, a runtime error

will result with a message posted to the log. Note that there is no meaning to the

order of the slice indices – they will be sorted from greater to lower.

 dataIn = 0;

 Wait(1);

 //sigVal1 will be 0

 unsigned sigVal1 = dataIn.Uint();

 dataIn = 4;

 //sigVal1 will be 0 because assignment hasn't yet been synchronized with the simulator.

 unsigned sigVal2 = dataIn.Uint();

 Wait(1);

 //sigVal3 will be 4

 unsigned sigVal3 = dataIn.Uint();

 dataIn = 0;

 Wait(1);

 //sigVal3 will be 0

 unsigned sigVal3 = dataIn.Uint();

 //Set 2 MSB bits of data to one - don't touch other bits

 dataIn(2, 3) = 0x3;

 Wait(1);

 //sigVal4 will be 0xC

 unsigned sigVal4 = dataIn.Uint();

 //Set bit 3 to zero - don't touch other bits

 dataIn[3] = 0;

 Wait(1);

 //sigVal5 will be 0x4

 unsigned sigVal5 = dataIn.Uint();

 30

3.2.1.7. Value Domains

Signals in SPV are similar, conceptually and in use, to bit vectors.

However, signals have states beyond simple 0 and 1. Signal bits can be set to

X or Z, where X represents "undefined" and Z means "passive". When a

signal bit in SPV is set to X or Z, it is said to be in the X domain or Z domain,

respectively. When a signal is neither X nor Z, it is in the binary domain. A

signal cannot be in the X and Z domains simultaneously.

SPV will report each domain separately. That is, by default, all signal

operations will be in the binary domain but the X or Z domains may be

specifically requested. In such a case, the signal value reported is a bit mask

where all 1 bits are in the specified domain and all zero bits are outside of that

domain. If the user attempts to read the binary domain of signal bits in the X

domain, the X domain bits will be reported as 0's. For bits in the Z domain,

the binary domain value will be 1's.

When setting a bit to the X domain when it has been in the Z domain,

the bit will be taken out of the Z domain automatically. The reverse is true as

well. Setting the binary domain value of a bit will take it out of any other

domain.

Examples:

3.2.2. Logical Expressions

Sometime it is necessary to create a logical combination of signals or

we desire to use C++ variables instead of signals. For example, say we want

 //Set dataIn to binary 0

 dataIn = 0x0;

 Wait(1);

 //Set 2 LSB bits to X

 dataIn(XVal) = 0x3;

 //Set 2 MSB bits to Z

 dataIn(ZVal) = 0xC;

 Wait(1);

 //dataVal will be 0xC0 because the Z's are seen as 1's and the X's as 0's

 unsigned dataVal = dataIn.Uint();

 //Set dataIn to 0x5 BINARY.

 dataIn = 0x5;

 Wait(1);

 //X Val will be 0

 unsigned dataXVal = dataIn(XVal).Uint();

 //Z Val will be 0

 unsigned dataZVal = dataIn(ZVal).Uint();

 31

to record data_in on the positive edge of the clock, but only when the

data_in_valid signals is high. (We will need such an event later, in the

collector). One solution is to use the pClock event as we have until now and

check the status of data_in_valid in the loop, as in:

In general, all of the logical comparison operators can be used with SpvSig.

While we’re at it, we’ll introduce another (yet similar) way to accomplish

wait-until-condition-is-met with the WAIT_UNTIL macro, like this:

3.3. Processes

3.3.1. What is a process?

A process is a unit of parallel execution. In SPV, processes are built

upon C++ functions.

3.3.2. Process types

In SPV, processes come in several flavors; Atomic, Error, and Thread.

 unsigned vals[10];

 unsigned i = 0;

 //Collect 10 samples, but only when valid sig is

high

 while(i < 10)

 {

 Wait(pClock);

 if(dataEn == 1)

 {

 vals[i] = dataIn.Uint();

 i++;

 }

 }

 unsigned vals[10];

 unsigned i = 0;

 //Collect 10 samples, but only when valid sig is

high

 while(i < 10)

 {

 //Block here until condition is met

 WAIT_UNTIL(pClock, dataEn == 1);

 vals[i] = dataIn.Uint();

 i++;

 }

 32

An error process is the most limited of the three. It is signal sensitive

but is intended to detect error conditions only. All error processes write debug

output to the screen and log file (spv.log). Beyond that, an error process is

limited to three predefined behaviors – stop, finish, and continue.

• Stop – temporarily stops the simulation. The simulation may

be continued from the same point in the simulator via the

simulator's user interface.

• Finish – ends the simulation. The simulator application will be

closed.

• Continue – Log only. The simulation is not interrupted.

Atomic processes require the user to define a function that contains

the signal sensitive code. This function is the user's opportunity to react to the

simulation. The process is atomic in that the function must execute in its

entirety immediately (in terms of simulation time) – there is no way to

suspend execution mid-function while the simulator resumes execution.

However, the process is cyclical. That is, the process function will be called

whenever its trigger event occurs.

Thread processes also require a user defined function, but here is it

possible to suspend execution (block) mid-function. The suspension will

usually be defined in terms of a signal event or a quantity of simulation time.

Thread processes make it possible to define complex logic that would require

multiple atomic processes or a complex state machine in a single atomic

process. However, thread processes tend to be more expensive than atomic or

error processes from a performance perspective. All of the processes we will

use in the coming chapters will be thread processes.

3.3.3. Executing processes

3.3.3.1. SpvEvent

The SpvEvent class listens for changes in a signal. When such a

change occurs, the event object will check if the change is of a type defined

when the event object was initiailized. Five transition types are supported:

• Positive edge (AtPos) – the signal value has risen.

• Negative edge (AtNeg) – the signal value has fallen.

• Change (AtChange) – the signal value has changed.

(effectively, Positive or Negative edge)

• Equal (Equ) – the signal value transited to some specified

value.

• Unequal (NEqu) – the signal value has transited to any value

except some specified value.

The event object is used to block a thread process by calling the Wait()

function. If the signal change satisfies the event’s trigger type, then the

process is unblocks and execution continues, either to the end of the thread

function or until the next Wait(). The Wait() function has an alternate form

 33

where you can specify an SpvSig and the transition type instead of an event.

This is convenient when you want to wait on a signal that you are also reading

or writing. (i.e. that you have already instantiated as an SpvSig) However,

what happens behind the scenes is that SPV will create a temporary

SpvEvent. Therefore, in a loop it is worthwhile to define an SpvEvent and

reuse it, rather than using this alternate Wait() form. As an example, we could

write a toggle function as:

Here, we’ve also introduced yet a third form of Wait() where we specify a

length of time to block, in simulation time units. (Simulation time scale units

depend on the settings of the HDL simulation. The SpvSig::GetTimeUnit()

function returns the simulation time unit as an exponent relative to secs; e.g.

femto-secs is -15.)

4. Using Bit Vectors

4.1. Overview

4.1.1. What is a bit vector?

A bit vector is an array of bits treated as an unsigned integer. Such an array

could represent a binary number, packet data, a random bit pattern, or any other

digitally encoded data.

The SpvBitVec class encapsulates such a list of bits. It provides many

services in the form of its public functions and operator overloads, including integer

(unsigned) arithmetic, bitwise operations stream output.

SpvBitVec is often used together with SpvSig to record and change HDL

component values.

The generation family of classes can be used to generate bit patterns (random

or otherwise) that can be stored in an instance of SpvBitVec.

 SpvSignal someSig("BookTestTb.some_sig");

 //Wait for any change in some_sig

 Wait(someSig, AtChange);

 //Wait 10 simulation cycles

 Wait(10);

 //Toggle some_sig

 someSig = ~someSig;

 34

4.1.2. Other Bit Vector Classes

Other classes that are part of the bit vector family include:

• SpvBitVecSlice – references to a section of a bit vector.

• SpvBitVecBool – references a single bit of a bit vector.

• SpvBitVecArr – a collection class of bit vectors.

• SpvBitVecCollect – aggregates bit vector chunks as one large bit vector.

• SpvBitVecIter – the inverse of SpvBitVecCollect, it doles out bit vector

chunks from one large bit vector.

These classes will be explained in the coming sections. Missing above is

SpvBitVecKind, which will be explained in the section on stream output.

4.2. Bit vector data

A SpvBitVec can receive its data from one of four sources; One of the

SpvBitVec initialization functions, an unsigned integer, a signal, or bit pattern

generation.

4.2.1. Construction and Initialization

The constructor functions create bit vectors and the initialization

functions provide a quick way of filling a bit vector with data as well as

controlling the size of the bit vector. These two types of functions are linked,

as some of the constructor overloads initialize as well.

When constructing a bit vector, the size and initial value can be

optionally specified as well. The different forms of constructor will create an

uninitialized bit vector, duplicate an existing bit vector, copy the binary

domain of a signal, or copy the bit pattern of an unsigned integer.

 35

The assignment operator and Copy() function have similar effects to

the above. The difference between these two is that the assignment operator

will not change the bit size of the left hand bit vector, while Copy() will cause

the calling object to be a duplicate of the source bit vector (the parameter) in

every way. Note that duplicating a source vector via the new vector’s

constructor, as we did above, is the same as calling Copy() – that is, both size

and data are taken from the source. The general rule is, whenever assignment

operations between bit vectors of differing sizes are executed, any bits

"missing" from the right operand are considered zero, while any "extra" bits

are ignored.

A bit vector's sized can be changed with Resize(). Its size can be

locked with MakeSizeConst().

Continuing from the code above...

//Make sure to: #include <SpvHfile.h>

 //Create uninitialized bit vector of 32 bits

 SpvBitVec vecUnitialized;

 //Create bit vector with bit pattern of unsigned integer value 67

 //and size of 32 bits (default)

 SpvBitVec vecUnsigned(67);

 //Create bit vector with bit pattern of unsigned integer value 68

 //and size of 8 bits

 SpvBitVec vecSmallUnsigned(68, 8);

 //Create a second bit vector pattern with bit pattern of

 //unsigned integer value 68 and size of 8 bits

 SpvBitVec vecCopy(vecSmallUnsigned);

 //Create a signal linked to the hardware component top.clk

 //We assume such a component exists, otherwise this will cause

 //a runtime error.

 //create a bit vector with a copy of the signal’s s size and bit pattern

 SpvSig sig("top.clk");

 SpvBitVec vecSignalCopy(sig);

 36

The last three initialization functions, One(), Zero(), and Gen() set all

the bits in the bit vector to one, zero, and random values, respectively.

Once again continuing from the above code...

 //Copy 68 to vecUnitialized. The size of vecUnitialized

 //is unchanged at 32 bits.

 vecUnitialized = vecSmallUnsigned;

 //Copy 68 to vecUnitialized. The size of vecUnitialized

 //is changed to 8 bits.

 vecUnitialized.Copy(vecSmallUnsigned);

 //Attempt to copy 256 to vecUnitialized.

 //Because vecUnitialized has a bit size of 8 bits, the 9th

 //bit of the integer is cut off and effectively,

 //zero has been copied to vecUnitialized.

 vecUnitialized = 256;

 //Change bit size of vecUnitialized to 9 - the new bit is zero

 //or in other words, the value of the bit vector remains the same

 vecUnitialized.Resize(9);

 //Copy 256 to vecUnitialized

 vecUnitialized = 256;

 //Copy the first 9 bits of sig.

 vecUnitialized = sig;

 //Lock size of vecUnitialized

 vecUnitialized.MakeSizeConst();

 //value of vecUnitialized is 68, but its size remains 9 bits

//instead of 32. A warning message is output to the log

 vecUnitialized.Copy(vecSmallUnsigned);

 //Set all 9 bits to one

 vecUnitialized.One();

 //Set all 9 bits to zero

 vecUnitialized.Zero();

 //Generate random bit pattern for 9 bits

 vecUnitialized.Gen();

 37

4.2.2. Bit vectors, integers, and operators

SpvBitVec is designed to allow a bit vector to be manipulated, for

most intents and purposes, as an unsigned integer of arbitrary bit length.

Furthermore, copying data to and from a bit vector is easy. The Uint()

function returns the first 32 bits of the bit vector and assigning an unsigned

integer to a bit vector requires no special additions. The entire bit vector can

be read as an array of 32 bit sections with UintInd(). As seen above, an

integer can be assigned to a bit vector thanks to overloading of the assignment

operator. Also, all of the arithmetic and bitwise operations can be performed

on a mix of integers and bit vectors.

The Uint64() function returns the first 64 bits of the bit vector and

assigning a 64 bit unsigned integer to a bit vector is accomplished with

SetUint64(). The SPV macro, SPV_UINT64, defines a 64 bit unsigned

integer in a compiler-portable manner and should be used instead of the

compiler’s type if portability is an issue.

 38

4.3. Displaying bit vectors

Bit vectors can be output to any output stream (any class derived from

ostream, such as the C++ standard cout) by using the overloaded insertion (<<)

operator.

Controlling the output format is accomplished by using the overloaded

parenthesis operator with one of the values of the OutputKind enumeration –

either SpvDec, SpvBin, or SpvHex. These create a special object of type

SpvBitVecKind, which is not a bit vector in and of itself, but rather a reference to

the source bit vector with the addition of an output mode. Using SpvDec has the

same effect as printing the bit vector with no output mode.

 //Create vec1 initialized to 5 and vec2 initialized to 0 with

 //a bit size of 8 bits.

 SpvBitVec vec1(5), vec2(0, 8);

 //i = 1 + 5 == 6

 unsigned i = 1 + vec1.Uint();

 //vec2 = 5 * 6 == 30

 vec2 = i * vec1;

 //vec2 = 5 ^ 6 == 3 (bitwise XOR)

 vec2 = i ^ vec1;

 //1's complement of 8 bits, vec2 = ~3 == 252 == 0xfc

 vec2 = ~vec2;

 //Set new size of bit vector to 64 bits

 vec2.Resize(64);

 //shift bits 32 bits to the left, with assignment

 vec2 <<= 32;

 //i = the second set of 32 bits in the vector == 252 == 0xfc

 i = vec2.UintInd(1);

 //As for Uint(), but with 64 bit unsigned

 //j will be 0x000000fc00000000

 SPV_UINT64 j = vec2.Uint64();

 //shift 24 bits (0xfc00000000000000)

 j <<= 24;

 //and assign to vector

 vec2.SetUint64(j);

 39

Continuing from the code above...

Similar code could be used to output to a file, like so...

4.4. Debugging Support

Debuggers are built to show built in types and to open up classes and

structures to their internal elements. Classes like SpvBitVec are not directly

supported by the debugger and even if their internal structure were open to the

debugger, you probably wouldn't understand much of what you'd see there.

Most debuggers have some mechanism for executing functions from the

watch window. SPV takes advantage of this to provide debugging support. The

Str function returns a string containing a text representation of the contents of

the vector. Str takes a single parameter of type SpvBitVecKind. (either SpvDec,

SpvHex, SpvBin, as above).

Try placing a breakpoint on one of the output lines of vec2 above. In the

watch window (or command line) of your debugger, try adding vec2.Str(SpvHex).

You should see the value of vec2 in the debugger. Try the same thing with

vec2.Uint(), vec2.Uint64(), vec2.UintInd(0), vec2.UintInd(1), and vec2.Size().

 //remember to include #include <ostream>

//prints 18158513697557839872

 cout<<vec2<<endl;

 //same as previous

 cout<<vec2(SpvDec)<<endl;

 //prints fc000000_00000000

 cout<<vec2(SpvHex)<<endl;

 //prints

11111100_00000000_00000000_00000000_00000000_00000000_00000000_000

00000

 cout<<vec2(SpvBin)<<endl;

 ofstream outFile;

 outFile.open("output.txt", ios_base::out | ios_base::trunc);

 //prints fc000000_00000000to the file output.txt

 outFile<<vec2(SpvHex)<<endl;

 outFile.close();

 40

4.5. About header files

In the above examples, we used the SpvHfile.h header which includes all

of the SPV headers. While it is possible to include only the required headers for

each file, we recommend that you take the easy way out and include SpvHfile.h.

4.6. Reference classes

Several classes in the bit vector family are not themselves bit vectors, but

references to an existing SpvBitVec. The performance of some of these classes

is optimized by reusing a pool of existing objects. Accordingly, the user should

not save references or pointers to instances of these classes, lest the referenced

instance be reused in the interim. Initialized instances of these class are not

obtained directly, but rather are returned by one of the SpvBitVec operators. If

you want to save a reference to a vector, copy the reference to a new instance, as

demonstrated below.

The relevant classes are, SpvBitVecKind (discussed above),

SpvBitVecSlice, and SpvBitVecBool (both discussed below), which all inherit

from SpvBitVecRef. They all implement GetVal() which returns a reference to

the bit vector that they refer to.

4.6.1. Slice

SpvBitVecSlice represents a section (slice) of an existing bit vector. It

can be obtained by using the dual parameter parenthesis operator. This

operator accepts as parameters the starting (from) and ending (to) bit indices

of the section.

SpvBitVecSlice is designed to interact seamlessly with bit vectors,

other slices, or unsigned integers – as if it was a bit vector unto itself.

However, with its referential nature, any changes made to the slice are

immediately reflected in the source bit vector and vice versa. If desired, the

slice's value can be obtained as a bit vector with the SpvBitVec casting

operator and/or copied with the assignment operator to another bit vector.

 41

4.6.1.1. Debugging Slices

The SpvBitVec class contains a debugging function for slices called

SliceStr, which takes as parameters the starting and ending indices of the slice

and a third parameter of type SpvBitVecKind. Set a breakpoint in the code

above and try setting a watch expression of : src1.SliceStr(4, 5, SpvHex).

 //Create two bit vectors initialized to 0x55 and 0xF1

 SpvBitVec src1(0x55), src2(0xF1);

 //Assign 4 bits (4 - 7, inclusive) of src2 to

 //the first 4 bits of src1. src1 is now 0x5F

 src1(0,3) = src2(4, 7);

 //Save a copy of the slice via initialization of an SpvBitVectorSlice

 SpvBitVecSlice refCopy = src1(0,3);

 //Same as: src1(0,3) = src2(4, 7);

 //Note that assignment of a slice is different than initialization

 //as shown above, even though both use the "equals" sign.

 //Assignment changes the value of the referenced bit vector

 //whereas initialization creates a new reference to the bit vector.

 refCopy = src2(4, 7);

 //Assign the value 2 to bit 4 - 5. src1 is now 0x6F

 src1(4,5) = 2;

 //Print the first 6 bits of src1 in hexadecimal.

 //Output is 2f

 cout<<src1(0,5)(SpvHex);

 //This has the same effect as

 //src1(0,3) = 0xF

 refCopy = 0xF;

 //Create independent copy of slice

 SpvBitVec contentCopy = src1(0, 3);

 //This has no effect on src1

 contentCopy = 0;

 42

4.6.2. Bool

SpvBitVecBool represents a single bit in a bit vector. It can be

obtained by using the square parenthesis (index) operator. This operator

accepts as a parameter the index of the desired bit.

Similar to SpvBitVecSlice, any change in the boolean value referenced

is immediately reflected in the source vector and vice versa. An independent

copy can be obtained with the casting operator of type bool.

4.7. Bit vector arrays

SpvBitVecArr encapsulates an array of bit vectors. However, it is more

than simply an array. It provides additional functionality such as wholesale

initialization and generation of all the vectors in the array, and concatenation of

the array bit vectors to a single vector.

A bit vector array can be thought of as a matrix of bits, with the bit vectors

making up the rows. SpvBitVecArr overloads the square bracket (index)

operator to provide intuitive access to the bits in the matrix. A function,

GetColumnVec(), provides the ability to retrieve a column of bits as a bit vector

(though you can’t change the bit vector that it returns).

 spv_Bit_Vector src(0x36);

 //src == 0x37

 src[0] = 1;

 //prints The second bit is 1

 if(src[1])

 cout<<"The second bit is 1";

 else

 cout<<"The second bit is 0";

 //Copy the 8th bit to the first bit. src == 0x36

 src[0] = src[7];

 //Independent copy of bit

 bool bitCopy = src[0];

 //Has no effect on src

 bitCopy = 1;

 43

 SpvBitVecArr vecArray;

 //Initialize array to 4 vectors of 8 bits each

 //with default generator limited to values

 //between 16 and 32

 vecArray.Init(4, 8, 16, 32);

 //Generate random values between 16 and 32

 //for all array vectors

 vecArray.Gen();

 //Print vector array

 //Printed what is below (but your output may be different)

//30

//30

//20

//29

 cout<<vecArray<<endl;

 //Fill vector array with 4, 8, 16, 32

 //Vector matrix will be (in binary digits, columns numbered from

RIGHT (lsb) to LEFT (msb)):

 //00000100

 //00001000

 //00010000

 //00100000

 for(int i = 0; i < vecArray.Size(); i++)

 vecArray[i] = 4 << i;

 //Print array vector as one long array

 //Output is 20100804

 cout<<vecArray.Pack()(SpvHex)<<endl;

 //Print each row of the bit matrix (in hex digits)

 //Output is 04 08 10 20

 for(i = 0; i < vecArray.Size(); i++)

 cout<<vecArray[i](SpvHex)<<" ";

 cout<<endl;

 //Print each column of bits

 //Output is 0 0 1 2 4 8 0 0 (starting with column 0 at left)

 for(i = 0; i < vecArray[0].Size(); i++)

 cout<<vecArray.GetColumnVec(i)<<" ";

 cout<<endl;

 44

4.7.1. Debugging Bit Vector Arrays

The SpvBitVecArr class contains two debugging functions, Str and

SliceStr which work similarly to the functions of the same name of

SpvBitVec with one extra parameter – the index of the vector in the array is

passed as the first parameter.

4.8. Aggregating and Dispensing bits

SpvBitVecCollect collects a number of bits, one chunk at a time. It is

often used to collect the state of a register or bus over time. The total number of

bits and the chunk size are set at initialization. By default, bits are collected

starting at the LSB, but this can be changed at initialization.

To use SpvBitVecCollect, first initialize the collector with the maximum

number of total bits for collection and the default chunk size, either in the

constructor or with the Init() function. Then call SetNext() to place a chunk into

the collection. Repeat calls to SetNext() as needed. Note that a second, optional

parameter to SetNext() can be a chunk size that is different than the default set

initialization. The IsLast() function returns true after the call to SetNext() which

fills the collector to the maximum number of bits set at initialization. Once the

collector is full (IsLast() returns true), SetNext() may not be called again until the

Init() function is once again called. Init() not only initializes the collector, it also

clears any current data.

SpvBitVecCollect also supplies the following functions:

o BitsCollected() – returns the number of bits already inside

the collector

o BitsRemaining() – returns the number of vacant bits

remaining

o IsEmtpy() – returns true when BitsCollected() is zero

o LastCollection() – returns whatever the last call the

SetNext() received.

o Collected() – returns the current contents of the collector.

A cast to SpvBitVec will have the same effect.

 45

SpvBitVecIter performs the inverse operation of SpvBitVecCollect.

Whereas SpvBitVecCollect collects chunks of data, SpvBitVecIter takes a

complete bit vector and serves it up in chunks. One common use is to feed

data over time to a bus.

SpvBitVecIter is initialized in its constructor or the Init() function

with a source bit vector and a default chunk size. Chunks are retrieved with a

call to Next(), where the optional parameter is a chunk size which may be

different from the default specified at initialization. Similarly to

SpvBitVecCollect, IsLast() function returns true after the call to Next()

which empties the iterator.

SpvBitVecCollect also supplies the following functions:

o BitsIterated() – returns the number of bits already

dispensed by the iterator.

o BitsRemaining() – returns the number of bits

remaining inside the iterator.

 //Initialize array to 4 vectors of 8 bits each

 //with default generator limited to values

 //between 16 and 32

 SpvBitVecArr vecArray(4, 8, 16, 32);

 //Fill vector array with 4, 8, 16, 32

 for(int i = 0; i < vecArray.Size(); i++)

 vecArray[i] = 4 << i;

 //Create a collector

 SpvBitVecCollect collector;

 //Initialize its size to 32 and its chunk size to 8

 collector.Init(32, 8);

 //Collect bits - note the termination condition

 //Here a bit vector from a bit vector array is collected,

 //but a signal or unsigned could be collected as well.

 for(int j = 0; !collector.IsLast(); j++)

 collector.SetNext(vecArray[j]);

 //Retreive the aggregate bit vector with the

 //help of the SpvBitVec casting operator

 //(here the cast is implicit in the assignment)

 SpvBitVec aggregate = collector;

 //Print the collected bits. Output is 20100804

 cout<<aggregate(SpvHex)<<endl;

 46

o IsEmtpy() – returns true when BitsRemaining() is

zero.

o LastIteration() – returns whatever the last call to

Next() returned.

Continueing from the code above…

5. Generation

5.1. What is generation?

Stimulus generation is a critical topic in hardware verification. In order to

properly verify the HDL code of a hardware project, as many combinations of

test input as possible must be tested. Manually creating such large masses of test

cases is unfeasible, thus the need for a more automated solution. When we refer

to Generation in this chapter, we mean any method of creating a bit pattern

according to a given set of rules. The classes that implement generation are called

generators.

SPV supplies a ready made set of generators that cover many common

generation needs. They are separated into two types, non-random and random. Also

supplied is an extensible class for user defined generation classes.

5.2. Generators

A generator in SPV is a class the derives from the SpvGen base class and

implements its interface, particularly, the Gen() function. SpvGen defines some

basic functionality for all generators. Amongst them are the functions:

o SetName() – Set a string name for an instance of a generator.

o Name() – Retreives the name set with SetName().

o Reset() – Only relevant to non-random generators, this function

returns the generator to its initial state.

o Size() – Returns the bit width of the generator as set at

initialization. While there are uses for the bit size, generally

this should be set to 32 (the maximum) at initialization.

 //Create an iterator on aggregate with a chunk size of 2

 SpvBitVecIter iter;

 iter.Init(aggregate, 2);

 //Print out aggregate 2 bits at a time

 //Output is 0 1 0 0 0 2 0 0 0 0 1 0 0 0 2 0

 while(!iter.IsLast())

 cout<<iter.Next()(SpvHex)<<" ";

 cout<<endl;

 47

o Gen() – This function, which is the only one in SpvGen with

no default implementation, must return the generated value,

according to the type of the generation class. The SPV built-in

generator classes implement this function. User defined

generation classes must implement it.

5.2.1. Non-Random (deterministic)

5.2.1.1. Constant

The constant generator, GenConst, generates the same bit pattern

always. This is the most trivial of generators and alone it is not very useful.

Its usefulness comes from its role as a building block for more complex

generators (See Composite Generators and file based generation below).

5.2.1.2. Sequential

Sequential generators generate predetermined values, one after another.

5.2.1.2.1. SpvGenNextStep

SpvGenNextStep is initialized with: a range of values, the step value,

the initial value, and the order (ascending or descending) at initialization. The

first call to Gen() returns the initial value specified. With every addition call

to Gen() it returns the last value incremented (or decremented, according to

the order – default is ascending) by step. When the upper bound is reached,

the value wraps around.

 //generates 18

 SpvGenConst genConst(32, 18);

 //Set name to generator

 genConst.SetName("Constant_Gen");

 //Generate constant value and store

 unsigned val = genConst.Gen();

 //Print name and generated value

 //Displays: Constant_Gen generated 18

 cout<<genConst.Name()<<" generated "<<val<<endl;

 48

5.2.1.2.2. SpvGenInRangeListOrder

SpvGenInRangeListOrder is initialized with a list of value ranges and

returns one value at each call to Gen(), in the order specified – ascending (first to last)

or descending (last to first).

 //Generate values from 0 to 10, in ascending

 //order with a step of 2, starting at 4

 SpvGenNextStep genStep1(32, 2, 10, 0, 4);

 //Same as genStep1, but start at 5

 SpvGenNextStep genStep2(32, 2, 10, 0, 5);

 //Generate 10 values - Note what happens when the

 //generators wrap around.

 //Output is...

 //4 5

 //6 7

 //8 9

 //10 0

 //1 2

 //3 4

 //5 6

 //7 8

 //9 10

 //0 1

 for(int p = 0; p < 10; p++)

 {

 cout<<genStep1.Gen()<<" ";

 cout<<genStep2.Gen()<<endl;

 }

 cout<<endl;

 49

5.2.2. Random

Generators that do not generate deterministically are called random

generators. The "randomness" of the generators can be controlled with

initialization constraints limiting the domain of possible values.

The “random” generation is actually pseudo-random, depending on the

a seed value for SPV’s randomization internals. That is, if the seed value is

the same, the generation should return the same At every programming

session, a seed for the random generators may be manually supplied, or taken

from the system time clock. If neither of these options is chosen, a constant

default is used. In any event, the seed value may be retrieved by calling

SpvConfig::GetSeed().

 By setting the seed manually, it is possible to recreate the generation

of interesting test cases. The SpvConfig::UseSeed() function sets the seed

type, and if necessary, the seed itself. Its first parameter is the seed type,

DefaultSeed, RandomSeed, or UserSeed. In practice, not calling

SpvConfig::UseSeed() at all will seed the generators with DefaultSeed.

RandomSeed uses the system time clock to create a seed which will change at

every execution. UserSeed takes the second parameter to

SpvConfig::UseSeed() as the seed. Use RandomSeed to ensure constantly

changing random generation, SpvConfig::GetSeed() to record the random

seeds, and UserSeed to replay test runs of particular interest. Note that the

seed functions are static functions and are called via SpvConfig with a double

colon, as written.

IMPORTANT: Recreating the generation of a test run with UseSeed

cannot be guaranteed if either the verification code or the HDL change

between the original test run and the replay. Generally speaking, as long as

the generators’ Gen() functions are called in the same order, the values

returned will be the same.

SpvGenInRangeListOrder genSequence(32, "8 12, 15, 18 20");

 //Prints 8 9 10 11 12 15 18 19 20 8 9 10 11 12 15 18 19 20 8 9

for(int k = 0; k < 20; k++)

 cout<<genSequence.Gen()<<" ";

cout<<endl;

 //Reinitialize the generator with the Init() function

 //with the same parameters, except reverse the sequence order

 genSequence.Init(32, "8 12, 15, 18 20", false);

 //Prints 20 19 18 15 12 11 10 9 8 20 19 18 15 12 11 10 9 8 20 19

 for(int l = 0; l < 20; l++)

 cout<<genSequence.Gen()<<" ";

 cout<<endl;

 50

5.2.2.1. GenInRange

GenInRange generates random bit patterns between a specified lower

and upper bound (inclusive).

Here we will use the SpvConfig::UseSeed() with UserSeed to force a

consistent reproduceable generation. For values that will vary for each run,

use RandomSeed instead. Note that for all the random generator examples,

your output may differ from that shown here.

5.2.2.2. SpvGenInRangeList

SpvGenInRangeList is similar to SpvGenInRangeListOrder with

the important difference that it SpvGenInRangeList will generate values

from its initialization randomly. Otherwise, usage is the same.

SpvGenInRange can be seen as a degenerate case of SpvGenInRangeList

where only one set of ranges can be specified.

 //Force seed to value to constant value (1),

 //which will make the results reproduceable

 //between runs

 SpvConfig::UseSeed(UserSeed, 1);

 //Uncomment this line for varying generation at each run

 //SpvConfig::UseSeed(RandomSeed);

 //Constrain generator to 7 bits between 10 and 100

 SpvGenInRange rangeGen(32, 100, 10);

 //Will print 51 27 92 34

 for(int l = 0; l < 4; l++)

 cout<< rangeGen.Gen()<<" ";

 cout<<endl;

 51

5.2.2.3. SpvGenNotInRangeList

SpvGenNotInRangeList is inverse of SpvGenInRangeList. It

generates values not in the initialization list (AKA an exclusion list).

Otherwise, usage is the same - almost. There is one important nuance. Here,

the bit width parameter is very important because it defines the value to

exclude from.

5.2.3. User Defined

User defined generators are the most flexible of all. The generation is

coded by the user in the form of a pure virtual function, Gen(). Within the

Gen() function, the user is responsible to return a unsigned integer value

which is the generation result.

A class derived from SpvGen can generate based on anything the user

is capable of . However, often such a class will include within it other

generators from which it will choose, or combine, to form its own generation.

The example below (Windows only) generates 0 in the morning and 1

in the afternoon!. This is not a very practical example (and even dangerous,

because the generation seed cannot guarantee the reproducibility of the values

generated) but it does serve to demonstrate that the user can do almost

anything…

 //Generate values from 8 to 12, 15, and 18 to 20

 SpvGenInRangeList rangeListGen(32, "8 12,15,18 20");

 //My output is 19 18 10 10 19 11 18

 //18 8 10 8 12 12 10 10 19 8 18 12 10

 for(int i = 0; i < 20; i++)

 cout<<rangeListGen.Gen()<<" ";

 cout<<endl;

 //Generate values excluded from 8 to 12, 15, and 18 to 20

 //Note that the range to exclude from is 0 to 32 because of

 //the generation size of 5 bits

 SpvGenNotInRangeList rangeNotListGen(5, "8 12,15,18 20");

 //My output is 16 4 29 23 25 21 7

 //1 21 2 17 31 21 23 13 13 2 4 17 26

 for(int j = 0; j < 20; j++)

 cout<<rangeNotListGen.Gen()<<" ";

 cout<<endl;

 52

5.2.4. Composite Generation

Composite generation is a powerful concept. It allows assembly of new

generators based on those already existing. In this way, more complex generators

can be modularly built.

5.2.4.1. Weighted

Weighted generators enable creation of a generator made up of other

generators, where each child generator is assigned a statistical weight.

Generation is internally a two step process; Random generation for deciding

which child generator to use and then execution of the chosen generator's

Gen() function.

#include <time.h>

class AmPmGen : public SpvGen

{

public:

 //Generates 0 in the afternoon (PM), non-zero in the morning (AM)

 virtual unsigned Gen()

 {

 time_t currentTime;

 tm *localTime;

 //Get current system time

 time(¤tTime);

 //Convert system time to local day time

 localTime = localtime(¤tTime);

 //In the morning generate 0, in the evening generate 1

 return localTime->tm_hour < 13;

 }

};

void UserDefinedGeneratorFunc()

{

 //Instantiate AM/PM generator

AmPmGen genPM;

 //Output will either be, AM or PM, depending on when you run the

code!

 const char* amPmStr = genPM.Gen() ? "AM" : "PM";

 cout<<amPmStr<<endl;

}

 53

SpvGenWeighted realizes a weighted generator based on percentage

weights. The size of the generated bit vector is assigned at initialization. The

AddGenElem() function attaches an existing generator to the composite. Its

first parameter is a reference to the child generator and its second parameter is

the percentage. All of the percentages together should add up to %100. If the

percentages add up to less than %100, the percentages are normalized to

%100. If they add up to more or less than 100, the weights are normalized.

5.2.4.2. Repetitive

SpvGenRepeat specifies a sequence of generator choices. Notice that

this is not the same as SpvGenInRangeList, where the repetition is of values.

Here it is a generator that is being repeatedly chosen for generation and not

necessarily a specific value. This way it is possible to specify, say, 2

generations beween some range and then 10 generations of a different range.

Similar to SpvGenWeighted, an AddGenElem() is defined, with the

first parameter being the generator for repetition, but the second parameter is

the repetition count instead of a statistical weight. Continueing from the

previous examples…

 //Build weighted generator with 10 percent assigned to

 //to rangeListGen and 90 percent to rangeNotListGen

 SpvGenWeighted genWeighted(32);

 genWeighted.AddGenElem(rangeListGen, 10);

 genWeighted.AddGenElem(rangeNotListGen, 90);

 //My output is 26 4 1 21 30 17 27 1

 //23 24 2 28 24 13 24 16 21 3 21 11

 for(int k = 0; k < 20; k++)

 cout<<genWeighted.Gen()<<" ";

 cout<<endl;

 54

Pay attention to the third generator in the code above. We use the

SpvGenConst class to cause the repetition generator to generate a constant value

(zero) every 5th and 6th call to Gen(). This demonstrates why we need a

“Constant” generator – the repetition generator’s AddGenElem() takes only

generators, that is, objects derived from SpvGen, so to cause the generation of a

constant value in our composite repetition generator we need a generator that will

return a constant value.

The composite generators themselves can be used as parameters to

AddGenElem(). In the example below, the repetition generator from the code

above will be used 50 percent of the time, while the value 99 will be generated the

other 50 percent. This example will also demonstrate the ClearGenerators(),

which will reset the the generator list for the weighted generator (it can also be

used with a repetitive generator). It further demonstrates using the the Reset()

function for restarting the generation sequence of the repetition generator.

Continueing from the previous examples…

 //Build repetitive choice generator with 2 repetitions per generator

 //Third generator is const generator generating zero

 SpvGenRepeat genRepeat(32);

 genRepeat.AddGenElem(rangeListGen, 2);

 genRepeat.AddGenElem(rangeNotListGen, 2);

 genRepeat.AddGenElem(SpvGenConst(32, 0), 2);

 //My output is 8 9 31 28 0 0 12 11

 //22 6 0 0 18 20 13 16 0 0 8 15

 for(unsigned m = 0; m < 20; m++)

 cout<<genRepeat.Gen()<<" ";

 cout<<endl;

 //Restart repetition generator

 genRepeat.Reset();

 //Clear generator list from weighted generator and rebuild

 genWeighted.ClearGenerators();

 genWeighted.AddGenElem(genRepeat, 50);

 genWeighted.AddGenElem(SpvGenConst(32, 99), 50);

 //My output is 99 19 99 99 99 99 99

 //99 8 22 99 7 99 0 99 0 11 20 13 30

 for(unsigned n = 0; n < 20; n++)

 cout<<genWeighted.Gen()<<" ";

 cout<<endl;

 55

5.2.5. File Defined Generators

File defined generators are generators that are defined in an external text file.

File defined generators enable parameterization of generation for the end user without

requiring C++ code changes and recompilation.

The SD (System Directory) class reads a text file with named generator

definitions, as well as other configuration information. These generators and

configuration setting can then be retrieved by the user via their names.

5.2.5.1. Text file format

The text file format is as follows:

 All parsed lines start with a line type followed by a colon. Line types

start at the first character of a line and are all upper case letters.

 Numerical values in the file may be decimal or hexadecimal (marked

by a 0x prefix). Strings are case sensitive. A double slash (//) marks a comment from

that point till the end of the line.

 Parsing will start only from the first line with a START line type and

will end at the at first line with a STOP line type.

 Most lines have a name parameter. If another line is defined with the

same name, then the last definition is conclusive, i.e. the last definition overrides the

previous ones.

 STRING line types define a string alias for another string value. A

STRING line follows the format:

STR: {Name} {String}

 NUMBER line types define a string alias for a signed integer value of

32 bits. A NUMBER line follows the format:

NUMBER: { Name} {Value}

 BIT_VEC line types define a string alias for a unsigned integeral value

of arbitrary bit size. A BIT_VEC line follows the format:

BIT_VEC: { Name} {BitSize} {Value}

 Similarly, BOOL line types define a string alias for a true/false

value. A BOOL line follows the format:

BOOL: { Name} {true/false}

The following example is the text file generated by the SPV AppWizard. It

contains a series of configuration definitions intended for use in initializing the seed

value for generation.

 56

The file is parsed with the SD::ReadGenFile() function. After

parsing, the “Get” functions can be used to retrieve values from the online

database. The following “Get” functions are defined:

o SD::GetInt() – Returns NUMBER definitions

o SD::GetBool() – Returns BOOL definitions

o SD::GetStr() – Returns STR definitions

o SD::GetBitVec() – Returns BIT_VEC definitions

The “Get” functions come in two forms. The first takes a reference to

the variable that will receive the value from the file as its first parameter and

returns true/false which inidicates whether the Name (second parameter)

actually existed in the file. The second returns the appropriate type (int, bool,

etc.) instead of the reference parameter but will cause an exception if there is

no matching line for the Name parameter. There is also a SD::IsExists()

function which returns true if a line of any type exists for the name indicated

in its parameter.

The C++ code that uses the definitions from the last example is below.

The feature implemented by the code is to allow the end user to set the seed

type and seed value from outside the C++ code. It just uses the file definitions

to determine how (and if) to call the SpvConfig::UseSeed() function.

START:

// Seed Values

STR: USE_DEF 0

STR: USE_RAND 1

STR: USE_FIX 2

NUMBER: RAND_SEED USE_FIX

NUMBER: SEED 123456789 // For case of

RAND_SEED == USE_FIX use this value

STOP:

 57

Generator line types are defined with the following general format:

{GenType}: {Name} {BitSize} {GenParameters}

where

GenType - Type of generator to create. There are a number of types, each

roughly corresponding to one of the SPV generation classes. Below are the mappings

from GenType to class and the GenParameter for each.

o GC – Corresponds to SpvGenConst – {Value}

o GR – Corresponds to SpvGenInRange – {From} {To}

o GS– Corresponds to SpvGenNextStep – {Step} {From} {To}

{StartVal} {IsAscending:=true|false}

o GRANGEO – Corresponds to SpvGenInRangeListOrder –

{RangeList} {IsUpwards:=true|false}

o GRANGE – Corresponds to SpvGenInRangeList and

SpvGenNotInRangeList, depending on the last parameter –

{RangeList} {IsInRange:=true|false }

o GPERCENT – Corresponds to SpvGenWeighted. –

{GenList} {WeightList}

o GQUANTITY – Corresponds to SpvGenRepeat. – {GenList}

{RepeatList}

All “List” parameters must be enclosed in quotes. RangeList is a comma

separated list of ranges or single values. For example: “1-4,6,8-10” which

translates to 1 through 4, 6, and 8 through 10. Note that there are no spaces

allowed and each range has a hyphen.

The GenList parameters are comma separated lists of generator names

previously defined in the file. The WeightList and RepeatList parameters are

comman separated values, each corresponding (by order) to a generator in the

GenList.

Name - The string literal that will identify the generator. If Name is the same

as a previously defined generator with the addition of a period followed by a

number, it will define a specific case of that previously defined

generator. This is known as a special generator, or point generator, which will

be explained later on.

 SD::ReadGenFile("../../../Runtime/GenParameters.txt");

 // Seed Config

 int seedType, seedVal;

 if(SD::GetInt(seedType,"RAND_SEED") == true)

 if(SD::GetInt(seedVal,"SEED") == true)

 SpvConfig::UseSeed((SpvSeedType)seedType,seedVal);

 58

BitSize - The size of the bit pattern to be generated.

Examples:

5.2.5.2. Using file generators in your code

Below is an example of the code that could be used to take advantage

of file defined generators. Note that the type used by SD::GetGen() is a

pointer to SpvGen. This is significant because it means that the code is

agnostic to the specific generator type defined. The example below looks for a

generator named “ConstExample”, but “ConstExample” could be defined as a

generator of any type without changing the C++ code.

//Const (here, always 3)

GC: ConstExample 32 3

//Range (here, 0 to 3)

GR: RangeExample 32 0 3

//Step up/down (by last param). Step size is second param.

//Starting value is penultimate param. (here, 0, 3, 6, 9, 12, 15, 2, 5, etc)

GS: StepExample 32 3 0 15 0 true

//Range list/not in list (by last param) (here, 0 to 4, and 15)

GRANGE: RangeListExample 32 "0-4,15" true

//Range list order up/down (by last param)

GRANGEO: RangeListOrderExample 32 "0-4,15" true

//Weighted generation: 10% for DataGen1, 90% for DataGen2

GC: DataGen1 32 3

GC: DataGen2 32 7

GPERCENT: WeightedExample 32 "DataGen1,DataGen2" "10,90"

//Repetitive generation: 10 times for DataGen1, 90 times for DataGen2

GQUANTITY: RepeatExample 32 "DataGen1,DataGen2" "10,90"

 59

5.2.5.3. INCLUDE

Often there will be many test configurations in a project for the same

DUT. Each configuration may have different generator definitions, for

example, one test is very random while another is more directed at a particular

case. We could define completely separate text file for each configuration, but

then we would probably find that many of the definitions are being duplicated

– an clear maintenance problem. The solution is to define a file with the

default configuration for all the lines that we reference in the code. We then

use the INCLUDE directive to import these definitions. Now recall from

above that if a line name is redefined, the last definition is conclusive, so we

can redefine the definitions we want to change. In this way, each test

configuration only represents the difference between it and the configuration

defaults instead of wholesale duplication.

In the example below, we assume that the defintions from the previous

example have been placed in a file called “GenDefaults.txt” and that we want

to override the “ConstExample” generator. Note that INCLUDE: must appear

before the START: directive. Further note that there is no need to change the

C++ code.

There is one important nuance in the redefinition of generators. If

inside we had overridden the “DataGen1” generator, this would have had no

effect on the “WeightedExample” and “RepeatExample” generators defined in

GenDefaults.txt even though both are defined with DataGen1. The reason for

 SpvGen* fileGen = NULL;

 if(SD::GetGen(fileGen, "ConstExample"))

 {

 //Will print: File generator returned: 3

 cout<<"File generator returned: "<<fileGen->Gen()<<endl;

 }

 else

 cout<<"Could not find generator!"<<endl;

INCLUDE: “../../../Runtime/GenDefaults.txt”

START:

//Redefine here as range of 5 to 10, instead of constant 3

GR: ConstExample 32 5 10

STOP:

 60

this is because at the time that these were parsed, DataGen1 had a particular

definition – the override only affects DataGen1 after “WeightedExample” and

“RepeatExample” have already been parsed and created.

5.2.5.4. Point (Special) Generators

There is one more method for generator override. Say that you have

multiple instances of a module in your DUT and you want to define consistent

generation across all of them, you’d simply use the same generator for all the

instances. But what if the end user sometimes needs to override the generation

for a particular instance or instances?

The file format sovles this use-case by specifying that if a generator

name ends with a dot followed by a number, then that generator will be

considered to be a special case of a definition of the same name without the

dot. This special case will be identified by the number following the dot. The

special case can be recalled from the C++ code by specifying an additional

parameter to the SD::GetGen() functions. This final parameter is the

numerical identification of the special generator. Now here’s the important

part; If the special generator ID specified exists, that special definition will be

the one returned. But if not, the default (without the point) definition will be

returned.

For example:

And the C++ code:

INCLUDE: "../../../Runtime/GenDefaults.txt"

START:

//Define a special case with ID 2 as a range from 5 to 10

GR: ConstExample.2 32 5 10

STOP:

 61

One last thing. Even thoughwe’ve been talking about generators exclusively

in the previous paragraphs, the same apparatus also works with other types STR,

NUMBER, BOOL, etc, with their respective “Get” functions.

See the SPV_User_External_Control documentation for more details.

 SpvGen* fileGen = NULL;

 //Will print:

 //File generator returned: 3

 //File generator returned: 3

 //File generator returned: 7

 for(unsigned i = 0; i < 3; i++)

 {

 if(SD::GetGen(fileGen, "ConstExample", i))

 cout<<"File generator returned: "<<fileGen->Gen()<<endl;

 else

 cout<<"Could not find generator!"<<endl;

 }

 }

 62

6. Coverage

6.1. What is Coverage?

6.1.1. Definition

As mentioned in the Generation Chapter, verification of HDL code

requires as many combinations of test input as possible. However, we need a

way to check that, in fact, we have covered all the possible states that the HDL

code could be expected to be in. In other words, we need a way to check the

comprehensiveness of the test suite. Coverage is keeping track of the

occurrence of a specified circumstance or set of circumstances.

6.1.2. Types of Coverage

6.1.2.1. Simple Coverage

Coverage that relates to the value of one free variable is called simple

coverage. An example of simple coverage is tracking the occurrences of

values of a single signal. When an occurrence of a particular value has

happened, that value is said to be "hit".

6.1.2.2. Cross Coverage

Cross coverage is tracking the occurrence of all the possible combinations

(the cross product) of several free variables, for example, tracking the hits of all

eight combinations of three single-bit signals. In SPV, simple coverage is treated

as a degenerate case of cross coverage.

6.1.3. Coverage Classes

SPV provides two related classes for coverage; SpvCrossCover and

SpvCoverage. SpvCoverage inherits from SpvCrossCover, and so includes its

functionality, but provides a simplified interface to coverage intialization for the

most common cases.

6.1.3.1. SpvCoverage

SpvCoverage is designed for the most straight-forward use of

coverage – recording signals states at some event. Usage is simple; Just call

AddItem() for each signal in the coverage and Start() to supply the sampling

event (an SpvEvent instance) and the coverage name, which will identify the

coverage object. The example below demonstrates using SpvCoverage for a

cross coverage of two columns, each recording a signal, and sampling on the

positive clock edge.

 63

When using SpvCoverage, the coverage database will be

automatically recorded to a file and will aggregate over multiple runs of the

simulation. Optionally, you may specify that a file be created to save the

coverage results from a simulation and the level of detail saved in the file. If

you opted for a high detail level, then you may also opt to have the coverage

object read the file and continue its hit tracking from the status saved in the

file. In this way, it is possible to keep coverage statistics across multiple

simulations, which is particularly important when executing an unattended

simulation series.

For our example, let’s drive random data and a random valid signal

and collect coverage on both of these.

The waveform from this drive looks like:

SpvEvent pClock("BookTestTb.clock");

SpvCoverage* cov = new SpvCoverage;

//Add BookTestTb.data_in for first coverage column

cov->AddItem("BookTestTb.data_in", "Data In");

//Add BookTestTb.data_in_valid for second coverage column

cov->AddItem("BookTestTb.data_in_valid", "Data In Valid");

//Name coverage object "sig1Xsig2" and sample on postive

//Clock edges

cov->Start("sig1Xsig2", pClock);

 for(unsigned i = 0; i < 100; i++)

 {

 dataEn = GenUnsigned(0, 1);

 dataIn = GenUnsigned(0, 0xF);

 Wait(pClock);

 }

 64

The coverage results can be viewed with the SPV Coverage Viewer.

Under Windows this is installed in the Start menu in the Simplus group.

When activating the viewer, choose Open and locate the SpvCovDir

subdirectory created in the simulation directory.

The result for our example is:

The leftmost column is the list of coverage objects for our simulation.

Here we can see sig1Xsig2, which is what we called our coverage object in the

call to Start(). The spinner arrows at the bottom allow the user to switch

between the runs of the simulation.

In the main window, the white column shows the entry values for the

first element in the row to its right.

The number of hits for each entry is displayed in its box. Entries with

at least one hit are green while those with no hits are red.

The horizontal row of boxes above the entry ID box show statistics

regarding the coverage. Starting from the left, is the percentage covered,

 65

defined as (entries hit at least once) / (total entries). Followed by efficiency,

which is the (total hits) / (entries hit at least once). The next box is the

randomization seed that will cause a replay of the generation. The last box is

simply the number of entries in the coverage object.

The top combo box marked “Coverage Info” shows information on the

individual items of the coverage, but only after selecting a field by clicking the

combo box and selecting a field.

The “44” is the number of hits for the marked entry, which is the entry

for dataEn == 0 and dataIn == 4. The reason why there are so many hits on

this entry, 0,4 is because after the 100 drives in the for statement, the

simulation was allowed to continue running a bit. As it happened, the last

values driven, were 0 for dataEn and 4 for dataIn. These values were sampled

at every clock from the last drive until the simulation terminated.

6.1.3.2. SpvVirCover and Coverage

Now let’s say we aren’t interested in sampling values at each clock,

but asynchronously on changes to dataEn and dataIn. We need to create an

event on the change of either of these signals. To accomplish this we can use

SpvVirCover to create a “virtual” signal who’s value will rise each time you

would like. SpvVirCover is an extension of the SPV language, and it is

located in BookTest library.

Now at the coverage definition:

We use Trigger to trigger the coverage whenever we would like. Also,

we define SetFullQuatity 5, this defines that 100% coverage is only when we

have generated 5 elements of each item.

Erasing the contents of SpvCovDir, so as not to show previous runs,

running the simulation, and then running the SPV Coverage Viewer, we get:

#include "../VirCover/SpvVirCover.h"

…

m_VirCover = new SpvVirCover();

m_VirCover->SetFullQuantity(5);

m_VirCover->Init("sig1Xsig2");

m_VirCover->AddItem("BookTestTb.data_in", "Data In");

m_VirCover->AddItem("BookTestTb.data_in_valid", "Data In Valid");

…
m_VirCover->Start();

for(unsigned i = 0; i < 100; i++)

{

 dataEn = GenUnsigned(0, 1);

 dataIn = GenUnsigned(0, 0xF);

m_VirCover->Trigger();

 Wait(pClock);

}

 66

Notice that there are fewer hits overall (100). This is because we won’t

sample situations where the combination of dataEn and DataIn didn’t change.

Also, we can see that combination 4,0 has 6 hits which is green because it is above

5. Combination 8,1 has only 3 hits which is not red (0 hits) and not green (above

or equal to 5 hits).

6.1.4. Adaptive Generation

As we saw in the last section, random generation may often leave some

values not covered. This is because each random generation is independent of all

the generations before it. If we want to raise the probability of covering all the

values within the same amount of simulation time, we need to make the

generation smart enough to take earlier generations into account. In other words,

we want generation that can change itself with feedback from the coverage, or

adaptive generation.

During runtime, the coverage objects may be queried for the number of

hits on a value (IsCovered()), the percentage of values with at least one hit

(CoverPercent()), the efficiency of the hits (CoverEfficiency()). (As an aside,

the hit count for a value can be manually incremented using

AdvanceEntryCount().)

 67

The GenerateUnCoverElement() function can be used to generate a

random value that has not been covered (no hits). GenerateMinCoverElement()

is similar in that it randomly generates a value from within those entries with the

least number of hits. The GetFirstValueThat() function returns the first value

that has been covered/not covered (specified by paramter) from a given reference

point. The search order (ascending or descending) can be specified by parameter

as well. The GetFirstRangeThat(), and GetRangeListThat() have a similar

functionality, but they return a range or list of covered/not covered values

respectively.

Now, let’s change the signal drive to use the feedback from the coverage

for generation. For the sake of demonstration of the coverage feedback, we’ll

enter an endless loop of generation by feedback.

Taking a look at the code above, we can see that the interior of the

generation loop has changed slightly. Instead of generating randomly, we ask

the coverage for one of the least covered entries. It returns an array (of type

SpvFastList<unsigned>) which, for our purposes, is simply an array of

values where each value corresponds to one item of the coverage entry. The

order of the values is the same order that we called AddItem() when we

initialized the coverage. So to retrieve the value for dataEn, we take the

second value in the list and for dataIn we take the first value in the list.

Erasing the contents of SpvCovDir, so as not to show previous runs,

running the simulation, and then running the SPV Coverage Viewer, we get:

m_VirCover->Start();

while(m_VirCover->CoverPercent() < 100)

{

 const SpvFastList<unsigned> &currGenList = m_VirCover-

>GenerateMinCoverElement();

 dataEn = currGenList[1];

 dataIn = currGenList[0];

m_VirCover->Trigger();

 Wait(pClock);

}

 68

7. Collecting and Comparing

Now that we can generate and check the effectiveness of the generation,

we should proceed to the other side of the verification project – the collection of

data and comparision of the actual data versus expected results.

We’ll use the same classes for signals and processes to create two new

processes, this time in the BookTestCol.cpp file, where the wizard has been kind

enough to create the function shells for us. Each of these processes will have the

responsibility to collect data from the DUT’s interface. One will collect from the

input and the other from the output. The input collection process will store the

data it monitors at the input in a FIFO structure. The output process will draw an

element from the FIFO for each value is monitors at the output and will compare

the two after running the input data through a transfer function. The transfer

function’s job is to simulate the DUT”s effects on the input data as it progresses to

the output. This is known as the reference model, or often, the “golden” model.

 69

7.1.1. Collection Processes

The code below is the input process, implemented in the

BookTestCol::PacketInThread() function. It simply waits on the positive clock

edge and pushes data into the FIFO whenever the valid signal is high. Notice here

that some of the signals (reset) and the clock event are not defined in the function.

They are define in the header file as members of the class, as shown by the m_

convention (member). The reason for this is because these objects will be needed

in more than one process, so instead of duplicating them, we define one at the

class level and initialize them somewhere else – in this case, in the constructor.

The FIFO object, m_DataFifo, is an instance of the STL deque class

(deque == double ended queue), which is also defined in the header, so that both

processes may access it. The push_back() function pushes a value onto the rear of

the FIFO. As you may imagine there is also push_front() function. Removing

elements is via the pop_back() and pop_front() functions. Accessing elements is

either through the front() and back() functions, if the access is at the edges, or

through the index operator ([]) for random access. Finally, the size() function

returns the number of elements in the queue.

The output process is somewhat more involved because it will not only

record, but it will also compare and declare errors. (A fuller, more modular

verification design, would separate the functions of comparator, reference model,

and collector into separate classes and objects, but here we’ll keep things simple.)

BookTestCol::BookTestCol()

{

 m_PClock.Init("BookTestTb.BookTest.clock", AtPos);

 m_ResetN.Init("BookTestTb.BookTest.reset_n");

}

void BookTestCol::PacketInThread)(

{

 SpvSig data("BookTestTb.BookTest.data_in");

 SpvSig dataEn("BookTestTb.BookTest.data_in_valid");

 Wait(m_ResetN, AtPos);

 while(1)

 {

 Wait(m_PClock)

 if(dataEn == 1)

 m_DataFifo.push_back(data.Uint)();

 }

}

 70

Here we also wait on the positive clock edge and only do something when

the valid signal is high. First we read the output data. Then we check the FIFO

status – perhaps it is empty, which would indicate unexpected data. Then we read

the head of the FIFO and pass it to a transfer function (see below) and the result of

the transfer function, “expected”, is fed to the comparator function which reaches

a decision on whether the data is good or not. If not, we print an error messae and

terminate the simulation. Finally, we pop the head value from the FIFO and start

over.

void BookTestCol::PacketOutThread()

{

 SpvSig data("BookTestTb.BookTest.data_out”);

 SpvSig dataEn("BookTestTb.BookTest.data_out_valid”);

 Wait(m_ResetN, AtPos);

 while(1)

 {

 Wait(m_PClock;)

 if(dataEn == 1)

 {

 unsigned received = data.Uint;)(

 if(m_DataFifo.empty)() //Check fifo status

 {

 SPV_OUT(<<"["<<SimTime()<<"] Unexpected: Received,

"<<received<<endl;)

 SpvConfig::StopSim(true ;)

 return;

}

 unsigned input = m_DataFifo.front)(;

 unsigned expected = TransferFunc(input);

 if(!Compare(received, expected())

 {

 SPV_OUT(<<"["<<SimTime()<<"] Mismatch: Received, "<<received

<<”, Expected, "<<expected<<endl);

 SpvConfig::StopSim(true);

}

 else

{

 SPV_OUT(<<"["<<SimTime()<<"] Compare OK: Received,

"<<received<<endl);

}

 m_DataFifo.pop_front();

 }

}

 71

7.1.2. Compare

The compare function below is quite simple. Trivial, actually. But, it

won’t always be so. What if the reference model was not exact? For example,

what if the reference model is a floating point model while the DUT is fixed

point? There could be round off error involved. Now, ideally, the reference

model would be exact, but the world is not an ideal place. So, to avoid false

positives (i.e. false flagging of errors), we could design a certain tolerance into the

comparison and this would make the comparison a bit less trivial. Conceivably,

the tolerance could event be dependent on runtime factors and so on, and end up

quite non-trivial.

7.1.3. Transfer Function

The transfer function below here is also quite simple, but only because our

DUT is trivial. Much of the effort involved in verification in general and DSP

projects in particular involves getting the reference model right. In the next

chapter we’ll see how to call Matlab routines for the refernce model.

Try changing the transfer function to do some sort of manipulation on the

input data. You should see the collector/comparator catch the DUT’s lack of

conformance. Now modify the DUT until the test doesn’t report any errors and

VOILA, you’ve verified the DUT.

One last word on the comparison and transfer functions. Here, our check

is bit accurate, but not clock accurate. That is, no check is made to see if the data

comes out when it is supposed to. Sometimes this is necessary as well. In that

case, we would not just be checking the data when the output valid signal is high,

but we’d be checking the output’s valid signal itself, in addition to the data, at

every clock. That would mean that our Transfer function would have to be aware

of the timing of the input valid and take that into account when predicting both the

output valid and the output data.

bool BookTestCol::Compare(unsigned received, unsigned expected)

{

 if(received == expected)

 return true;

 else

 return false;

}

unsigned BookTestCol::TransferFunc(unsigned input)

{

 return input;

}

 72

There is also a completely different kind of check – a rule check. Here,

there is no reference model, but there are rules for proper behavior. For example,

maximum latency from input to output may not be higher that 100 ns. Here, we

would also monitor the input and output, but we’d be looking for rule violations as

opposed to comparison to a reference model.

8. Calling Matlab routines from SPV

Matlab is commonly found in hardware applications, particularly DSP

projects. SPV’s companion library, DPF, contains interface classes that greatly

ease calling Matlab routines for either signal generation and/or as a reference

model for the DUT. This chapter explains how to use the interface class to call

Matlab routines from within an SPV verification application.

8.1. Setup

If you used the wizard to create your project with linking to DPF (the default)

and Matlab was already installed, you should be already be set up. If not you will

have to do the following to your project settings:

o Add the Matlab include directory, usually

<MatlabRoot>\extern\include, to the “Additional include

directories” field of the C/C++preprocessor settings. For

example:

C:\Program Files\MATLAB704\extern\include

o Add the Matlab library directory, usually

<MatlabRoot>\extern\lib\<Platform>\<CompilerVendor>\<Co

mpilerVersion>, to the “Additional library path” field of the

linkinput settings. For example,

C:\Program
Files\MATLAB704\extern\lib\win32\microsoft\msvc60

o To the linkGeneral settings, in the “Object/library modules”

field, add:

▪ libmx.lib

▪ libeng.lib (only really needed if you use the Matlab

engine, see below)

▪ DpfMtd.lib or DpfMt.lib (for debug and release

projects, respectively)

8.2. Two ways to call

The are two ways SPV supports calls Matlab routines on-line:

o Invoke Matlab engine

o Call Matlab compiled function

The Matlab engine actually starts up an instance of Matlab, which

means that it uses a Matlab license. Invoking this instance and

communicating with it is accomplished via the functions in the engine.h

Matlab header file. In short, an initialization function returns a handle to a

Matlab instance. Most other functions require this handle for communication

 73

with the Matlab engine instance. Variables can be placed in and retrieved

from the engine and functions executed as an evaluation of a string command.

Before exiting the simulation, you must call the termination function.

The Matlab compiler (mcc) turns .m file functions into a form that can

be executed without a Matlab license (though mcc itself is licensed

separately). In this case, mcc will create a binary library with an

accompanying header file. The header file will include any functions that

were defined as callable and two functions for initialization and termination.

The initialization function must be called before any calls to the functions in

the compiled library and the termination function should be called before

exiting the simualation. The compiled functions themselves come in two

forms; mlf and mlx. We will use the mlf-prefixed versions here, because they

are easier to use and look more like regular C functions.

 Engine MCC library

Initialization Engine* handle =

engOpen(NULL);

engEvalString(handle,

”path_to_m_file”)

lib<LIBNAME>Initialize()

Routine Call engPutVariable(handle,

"in", in);

engEvalString(handle,

”matlab func call

string”);

out =

engGetVariable(handle,

"out");

mlfMyfunc(out, in)

Termination engClose(handle) lib<LIBNAME>Terminate()

More (and authoritative) information can be found in the Matlab and

mcc documentation. The rest of this chapter explains how to call a Matlab

function, either through the engine or as a compiled function. The actual

compilation using mcc is beyond the scope of this document.

In either case, the DPF interface classes are the same.

8.3. DpfMl interface classes

The interface class directly supports the following Matlab types:

 74

o One and Two dimensional (matrix) numerical arrays

▪ Double – MlDoubleArray/ MlDoubleMatrix

▪ Float – MlSingleArray/ MlSingleMatrix

▪ Logical (boolean) – MlLogicalArray/

MlLogicalMatrix

▪ Unsigned and Signed integers

• 8 bit – MlUint8Array/ MlInt8Matrix

• 16 bit – MlUint16Array/ MlInt16Matrix

• 32 bit – MlUint32Array/ MlInt32Matrix

• 64 bit (if supported by your Matlab version) –

MlUint64Array/ MlInt64Matrix

▪ All types, except logical, may also be real or complex

o Structure – MlStructArray

o String - MlString

Matlab Cells are not supported at this time.

Some important things to note:

o It is important to realize that in Matlab, single values are treated

as a degenerate array of size 1, so all types, except strings are

represented by array classes.

o The DpfMl classes wrap a the Matlab external library’s

mxArray* type. In most cases where a Matlab API function

requires an mxArray* or mxArray** (e.g. output parameters to

mlf-prefixed functions), a DpfMl class can be used

transparently.

o The DpfMl classes are intended to ease the interface between

Matlab and C++, that is, to translate between the two worlds

while hiding the difficulty of the Matlab C API. Keeping this

in mind will prevent problems and poor performance.

o Since DpfMl classes are used in the C++ realm, the indexing

convention follows the C++ language. In other words, array

indices start at zero and not one, as in Matlab.

o All of the Array classes support the Resize() function which

will reallocate the array. Beware, this operation requires

copying the old array to the new array.

o All of the DpfMl classes support the ToString() function

which returns a textual representation of the contents of the

object, up to a certain maximum number of elements. Beyond

this maximum, only the dimensions of the array are printed.

The maximum can be changed/retrived with the

 75

MlEntityBase::SetPrintLimit()/MlEntityBase::GetPrintLim

it() functions.

The DpfMl.h header file includes all of the classes described here.

8.4. Calling the routines

Now let’s tie it all together in an example:

The code above opens an instance of the Matlab engine and adds a

directory to the engine’s search path. At this point we save the handle on the

#include <DpfMl.h>

#include <engine.h>

Engine* eng = engOpen(NULL);

//Assert success

_ASSERT(eng);

//If .m file is not on the default Matlab search path,

//you will need something like this.

//engEvalString(eng, "addpath('C:\\m_file_dir’);”);

…..

//Declare Matlab array

MlStructArray in;

//Implicitly create structure array of size 1,

// and implicitly create field, DoubleData, of size 1 and type double.

in["Data"] = 1;

//Place structure in the scope of the Matlab instance

engPutVariable(eng, "in", in);

//Call function

engEvalString(eng, "out = MyFunc(in);”);

//Retreive structure from Matlab instance. If "out" is not a structure

//this will give an exception at runtime.

MlStructArray out = engGetVariable(eng, "out”);

int retVal = out[“DataOut”];

…..

engClose(eng);

 76

side, because we (usually) don’t want to open an instance of the engine for

every function call as the overhead of the engOpen() is significant. The we

declare an empty structure, in. We then fill a field, Data, with an integer. Its

important to understand that by doing this assignment, several things have

happened implicitly. First of all, the empty structure is no longer empty. That

is, it will now have a size of one. (We could use Resize() to give it a larger

size. Also, most of the DpfMl classes have the option of specifying the array

size in the constructor or Create() functions). Furthermore, since there was

no “Data” field, one is now created. Finally, since “Data” previously had no

type, the type is implicitly set in the assignment to whatever is being assigned

– in this case, a 32 bit signed integer. That’s a lot of implicit stuff going on,

but it is key to the usability of the DpfMl objects.

The next line, engPutVariable(), places the structure into the Matlab

engine’s environment. Once it is there we can use it in the next line, which is

the call to the Matlab routine. Notice how the input parameter to the

MuFunc() function is the same “in” that we specified in the previous line.

Here we also tell Matlab to store the results in a variable called “out”. But this

variable only exists in the engine, so we call engGetVariable() to retrieve it.

Notice how we use the return value as the initialization of another

MlStructArray. This will cause the out variable to wrap the mxArray*

returned by engGetVariable().

Finally, we use the output by assigning it to a variable. Note that if

there is no field name “DataOut”, it will be created. But if there was no field,

then there is also no data, and that will cause an exception when we attempt

the assignment.

The build-input, engPutVariable(), engEvalString(), engGetVariable(),

use-ouput, sequence will often repeat many times in a single simulation.

Ultimately, we will finish the simulation, where we call engClose() to close

the Matlab engine and free all of its resources.

And as we’re talking about freeing resources, it’s a good time to

mention that the DpfMl classes keep track of the Matlab objects they wrap.

Under most conditions, they will release the associated Matlab object when it

is no longer in use. However, should you want to release an object early, say

because the object is very large, the Destroy() function will do that for you.

Beware, however, and make sure that no one else is still holding on to that

data – DpfMl has no way of knowing when non-DpfMl code is still using an

object. On the flip side, it may be desireable to prevent the release of a Matlab

object, say, if non-DpfMl code is still holding a reference to it when the

DpfMl object goes out of scope. The SetNoDestroy() function fills this need,

but someone will have to call Matlab’s mxDestroy() function to release the

resource yourself or risk a memory leak.

Now, let’s see the same code built for the Matlab compiler:

 77

This comes out a bit cleaner. The initialization and destruction of the

Matlab runtime is through the Initialize/Terminate functions that are created

by mcc for each library. The calls are reference counted, so while you may

call the Initialize function more than once, each call must eventually have a

matching call to the Terminate function, or the library won’t ever really

terminate. Note that there is no need to set a search path at runtime, but there

is a need to specify the library to the linker, as well as the header file to the

compiler, at compile time.

The assignment of the Data field in the “in” structure is the same. The

big difference here is that there is no set/get of variables and that the function

is called in a C-ish fashion. (The format for the mlf function, in which the out

parameter as the first function argument, is the format for the mcc that was

current to Matlab 7. An earlier version of mcc would return the first output

parameter as the return value of the mlf function. In this case, out could be

assigned to the function’s return value, similar to way we called

engGetVariable() in the previous example.)

 One more note that is relevant to both methods. Calling Matlab like

this, that is, for single values, is very inefficient. Doing so for each sample in

the simulation would bring performance down significantly. Matlab is

designed to work on vector (arrays) of data and is optimized to that end. So

you are usually better off collecting a block of data (say, with the help of the

#include <DpfMl.h>

#include “libMylib.h”

libMylibInitialize();

…..

//Declare Matlab array

MlStructArray in;

//Implicitly create structure array of size 1,

// and implicitly create field, DoubleData, of size 1 and type double.

in["Data"] = 1;

MlStructArray out;

mlfMyFunc(out, in);

int retVal = out[“DataOut”];

…..

libMylibTerminate();

 78

deque class) and then calling the Matlab routine on the entire block, the trade-

off being greater code complexity.

8.5. More usage

Now that we’ve gone through how to call a function, let’s delve a bit

more into the nuances of how to use the DpfMl objects.

One of the limitation of the MlStructArray is that you cannot assign

into the middle of a field that is a vector. That is, the code below will not

compile.

To accomplish this task, we first create a numeric array and then assign

it to the structure.

Don’t worry overly much about the array copy. Matlab uses a copy-

on-write scheme which only truly duplicates copies when one or both of their

contents change following the copy. This is true as long as both the source

array and the destination field are the same type – here, a 32 bit integer (an

uninitialized field, as above, will automatically be set to the same type as the

source array). If the types are different, there will be a copy and conversion of

each and every element.

In the other direction, that is, when you want to access array data that

already exists a field of the array, you use an array reference to access the

elements, as shown below. Here, there is no copying, but the type is sensitive

//Declare Matlab array

MlStructArray in;

in["Data"][6] = 1;

//Declare Matlab array

MlStructArray in;

MlInt32Array a;

a.Resize(10);

a[6] = 1;

in["Data"] = a;

 79

– the field must actually be the same type as the cast. Notice that you can

resize and array field this way, so this could be used as an alternative to the

copy in the last example.

Continueing from above…

The DpfMl classes do self checking for most function calls or operator

usage (which is really the same thing), so when doing something in a loop,

you will get better performance if you access the underlying data directly. See

below.

The first loop uses MlDoubleArray’s index operator to access the

elements of the array. The second loop uses the underlying memory pointer,

accessed implicitly here just by assigning it to a double*. (There is also a

GetRealPtr() function for explicit access.) This will be more efficient than

the first loop. One word of caution, however, is that when extracting the

 // Create array of type double and resize it to 10 elements

 MlDoubleArray d;

 d.Resize(10);

 // Fill d with values using index ([]) operator

 unsigned i;

 for(i = 0; i < d.Size(); i++)

 d[i] = i * 1.1;

 // The same, but with better performance

 double* dPtr = d;

 for(i = 0; i < d.Size(); i++)

 dPtr[i] = i * 1.1;

 in["ArrayData"] = d;

//Declare Matlab array

MlStructArray in;

MlInt32Array& ref = in["Data"];

cout<<ref[6]<<endl;

ref.Resize(20);

ref[15] = 100;

 80

underlying pointer, the pointer type must match the array type, or a runtime

exception will occur. This is because once you directly access the array

memory, there is no way to keep the user from corrupting it. One sure way to

corrupt the memory is to project and use a pointer of the wrong type to the

array’s memory. If you are sure you know what you are doing, you can use

the GetRealVoidPtr() to return a type-neutral pointer to the array’s memory.

And, of course, once you have the pointer, you can cast the type to whatever

you want – C++ will let you shoot yourself in the foot if you insist….

Matlab arrays aren’t very good for collecting data, if you don’t know

in advance how many samples will be collected. When you need this kind of

queue, you can either allocate the maximum buffer size, resize as you go along

(an expensive operation), or you can use STL’s deque and copy the FIFO

before you call a Matlab routine. For the other direction, there is no

assignment from a field to a deque, but there is the CopyTo() function instead.

By the way, versions of these also exist for STL vector, in addition to deque.

In all cases, the destination array/vector/deque will be resized to the source’s

size.

 deque< unsigned > fifo;

 in["FifoData"] = fifo;

 in["FifoData"].CopyTo(fifo);

